Use the method of sections to determine the forces in members EF, EC, and BC . Determine which of these members are in tension and which are in compression.

begin by analyzing the truss as a whole:

$$
\begin{gathered}
\sum M_{A}=0 \\
(D)(24)-(1)(24)-(6)(16)-(3)(8)=0 \\
D=6 k N \\
\sum F_{y}=0 \\
D+A_{y}=3+6+1 \\
6+A_{y}=10 \\
A_{y}=4 k N \\
\sum F_{x}=0 \\
A_{x}=0
\end{gathered}
$$

Next cut the truss into two sections

Be sure to make the cut along the unknown members:

you can choose to analyze either side you think is easiest in this example we will analyze the left side of the cut:

$$
\begin{gathered}
\sum F_{y}=0 \\
A_{y}-3-C E \sin (36.9)=0 \\
4-3-C E \sin (36.9)=0 \\
\boldsymbol{C E}=\mathbf{1} .6 \mathbf{k N} \\
\sum M_{E}=0 \\
(6)(B C)-(8)\left(A_{y}\right)=0 \\
(6)(B C)-(8)(4)=0 \\
\boldsymbol{B C}=\mathbf{5 . 3} \boldsymbol{k N} \\
\sum F_{x}=0 \\
E F+C E \cos (36.9)+B C=0 \\
E F+1.6 \cos (36.9)+5.3=0 \\
\boldsymbol{E F}=-\mathbf{6}=\mathbf{5 7} \boldsymbol{k N}
\end{gathered}
$$

members with a negative value are in compression and ones with a positive force in tension

